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ABSTRACT

The Buehler (1957) optimal 1-a lower confidence limit on the

reliability of k of n systems of independent components is derived for the

case of zero failures and equal sample sizes. The limiting form of the lower

confidence limit is obtained for n-1 of n systems as n goes to infinity.

This result is used to show the nonconservativeness of the Maximus method

given by Spencer and Easterling (1986).
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EXACT LOWER CONFIDENCE LIMITS FOR THE RELIABILITY
. OF k OF n SYSTEMS FOR ZERO FAILURES AND

NONCONSERVATIVENESS OF THE MAXIMUS METHOD

Andrew P. Soms

1. The Lower Confidence Limit

We consider a k of n system of independent components, i.e., a system

where the components function independently and the system works if and only

if at least k of the subsystems do. Let pi be the probability that the

i th subsystem functions. Thus

n

h) = i=1

where P = (P1 ... p), h(F) is the system reliability corresponding to

* and Zi = 1 if the ith subsystem functions, 0 otherwise. The cases k 1

and k n correspond to parallel and series systems, respectively. A

. practical matter of great importance is to place a good 1-a lower confience

limit on h(p) when binomial data is available on the subsystems, i.e., when

the observed values y1 ' Y2 '''''yn of Y1 ' Y21''''Yn are available, where

the Yi's are independent binomial random variables with parameters mi and

Pi. In other words, Yi is the number of successes in mi trials of the it h

subsystem. Buehler (1957) gave a general solution to this problem which is

generally computationally difficult. We will specialize this to the case when

S(in 1 ,m2 ,'.,m n ) = (m,m, ,m) and y (YY2, ,n) = m = (mm,...,m).

In this case the 1-a lower confidence limit a on h(p) is
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..% a inf h(;) Pi p > (2)
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More generally, a is given by

a = inf h(p) I P('Ig(z) ) g()) ) a

where g(g) is a reasonable point estimator of h(;). The only property of

" g that we will assume in the sequel is that g(m) is the unique maximum of

g(y). This insures that a > a y p , and gives the reasonable result

that a is the largest lower confidence limit. Since h(;) is a

nondecreasing function in each Pi' without loss of generality (2) may be

rewritten as

n m
a- =inf h(p) ( = a (3)

m

One of the results of Pledger and Proschan (1971, p. 92) states that, subject
.°"n 1/m

' to n = a/, which is the condition in (3), h(g) is minimized by
i=1

choosing the pi to be equal, i.e., pi = a (nr) (they prove that h(-) is

a Schur-convex function of Ri = -n Pi' which implies the above). So the

1-a lower confidence limit a is given by

- - 1i 1 n-i
n

a ( ) n)(,,) (l_ nm) (4)
m ik

n

* since for all the pi equal (1) implies that z, is a binomial random
,P..1i 1

variable with parameters n and a For k=1 and k=n, (4) is

already known (see, e.g., Spencer and Easterling (1986)). We summarize the

above results in Theorem 1.1.

Theorem 1.1. The lower i-a confidence limit a on h(p), the reliability

a-. m

of a k of n system, when all the subsystem test results have equal sample

sizes m and zero failures are observed, is given by (4).
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For purposes of the next section, we shall let k = n-1 and consider the

limit of (4) as n + -. When k = n-1, (4) becomes

1 n-i 1 1

a n n nm )  _Cl- nm + a (5)
m

and, as n + =, this tends to

b =a"I/m (-En a) 1/m . En cL/m -n (
'[..b =a + a =e (1 + (6)

mm m

(in fact, it is readily verified that the limit for a n-k of n system is
k

e~n a/n i (.-l a )'/i!, but this is of no interest here).
.. i=O

2. Nonconservativeness of the Maximus Method.

We first consider the limiting behavior of the Maximus method under the

same assumptions as above, i.e., an n-1 of n system as n + a with zero

observed failures. Using the description of Spencer and Easterling (1986), we

have Q0 = 0 and Q, = i/(m/(n-1) + 1)n , where we have used the unpooling on

the n (n-i) component series sytems in parallel to give independent

subsystem data with m/(n-1) trials and 0 failures. This yields the

effective binomial sample size NS ,

N- (1-Q)/Q = 1-1/(m/(n-1)+1)n (7)S I/(m/(n-1 )+1 )n

and observed failures F S = 0. As n + w, the limit in (7) is

N em (8)

. and so the limiting Maximus lower confidence limit aM is

-,1/(em_1) )

a = a - I + Ln a/em (9)
_ aM

For the purpose of comparison, we take a = .01 and m = 20. Then the

exact lower confidence limit b is .9772. The corresponding Maximus figure
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bM, obtained from (9) is bM = 1 - 9.5 x 10- 9. The true a, at ,

. corresponding to a lower confidence limit of 1 - 9.5 x 10- 9 is t= .998

(we emphasize this is a, not 1-a) and is obtained by solving (6) in

reverse, i.e., letting b = I - 9.5 x 10- 9 and solving for the corresponding

a. So there are points p in the parameter space whose coverage probability

- comes arbitrarily close to .002 from above when the nonunal or desired

minimal coverage probability is .99. These are n-dimensional parameter

points p such that p = (p,...,p) and pn < (.998)1/m but is arbitrarily

close to it.

We also consider a finite case. Let n=5, a = .01, m = 20. Then a
m

is .9815 and Maximus gives .9994, which corresponds to a true a, at,

of at = .448. So there are ponts p = (p,p,p,p,p) in the parameter space

with p5 < (.448)1/20, but arbitrarily close to it, for which the actual

coverage is arbitrarily close to .552 from above as contrasted with a

nominal or desired minimal coverage probability of .99.

3. Conclusions.

We have shown in this paper that there can be large differences in

nominal and actual coverages when the Maximus method is used. This method is

used extensively by government agencies. The use of such an apparently

nonconservative method should be carefully considered.
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